PHYS127AL Lecture 9

David Stuart, UC Santa Barbara Field effect transistors (FETs)

PHYS127AL Lecture 9

David Stuart, UC Santa Barbara Field effect transistors (FETs)

How many of you have heard of "CMOS" before?

Review: More complete transistor model

We used simplified (0th and 1st order) models:

1). $V_{BE} = 0.6 \text{ V}$ or the transistor is off I.e., $V_B = V_E + 0.6 \text{ V}$ Once the transistor is on, $\Delta V_B = \Delta V_E$.

$$I_C = I_s \left(e^{V_{BE}/nV_T} - 1 \right)$$

2). $I_C = \beta I_B$. And by charge conservation $I_E = I_B + I_C$ so $I_E \cong I_C$

3). $V_{CE} > 0.2 V$

A 2nd order correction incorporates effects from collector voltage differences

$$\begin{split} I_{\rm C} &= I_{\rm S} \left(e^{V_{\rm BE}/nV_{\rm T}} - 1 \right) \left(1 + \frac{V_{\rm CE}}{V_{\rm AF}} \right) - I_{\rm S} \left(e^{V_{\rm BC}/nV_{\rm T}} - 1 \right) \left(1 + \frac{V_{\rm CE}}{V_{\rm AR}} \right) - \frac{I_{\rm S}}{\beta_{\rm R}} \left(e^{V_{\rm BC}/nV_{\rm T}} - 1 \right) \\ I_{\rm B} &= \frac{I_{\rm S}}{\beta_{\rm F}} \left(e^{V_{\rm BE}/nV_{\rm T}} - 1 \right) - \frac{I_{\rm S}}{\beta_{\rm R}} \left(e^{V_{\rm BC}/nV_{\rm T}} - 1 \right). \end{split}$$

(Ebers–Moll equations with Early correction)

Review: Differential amplifier

Get positive gain by selecting output from $v_2 = -v/2$

Don't need output from other side, but we do need the other side to get the common mode suppression.

To maximize the CMRR = G_{Diff}/G_{CM} make R_{EE} large.

A current source has infinite impedance.

Common mode gain = $-R_C/(R_E+2R_{EE})$ Differential gain = $R_C/2R_E$

The NPN and PNP transistors we've discussed so far are called bi-polar junction transistors (BJT). FETs operate under a different mechanism.

DavidStuart@UCSB.edu

This is a junction FET (jFET) where a p-type region is implanted within an n-type bulk. The depletion region can be controlled by the gate. Lower V_G increases the depletion.

I = n A q v

So changing the gate voltage controls nA and I. Like pinching off a hose. "Depletion mode"

The NPN and PNP transistors we've discussed so far are called bi-polar junction transistors (BJT). FETs operate under a different mechanism.

The NPN and PNP transistors we've discussed so far are called bi-polar junction transistors (BJT). FETs operate under a different mechanism.

DavidStuart@UCSB.edu

This is a junction FET (jFET) where a p-type region is implanted within an n-type bulk. The depletion region can be controlled by the gate. Lower V_G increases the depletion.

 $\mathbf{I} = \mathbf{n} \mathbf{A} \mathbf{q} \mathbf{v}$

So changing the gate voltage controls nA and I. Like pinching off a hose. "Depletion mode"

The NPN and PNP transistors we've discussed so far are called bi-polar junction transistors (BJT). FETs operate under a different mechanism.

and <u>reduces</u> the current. DavidStuart@UCSB.edu Phy

Phys127AL Lecture 9: Field effect transistors

This is a junction FET (jFET) where a p-type region is implanted within an n-type bulk. The depletion region can be controlled by the gate. Lower V_G increases the depletion.

 $\mathbf{I} = \mathbf{n} \mathbf{A} \mathbf{q} \mathbf{v}$

So changing the gate voltage controls nA and I. Like pinching off a hose. "Depletion mode"

The current is controlled by V_{GS} .

If $V_{GS} = 0$ current flows, saturating at I_{DSS} based on doping. If $V_{GS} > 0$ a bit more current flows.

The current is controlled by V_{GS} .

If $V_{GS} = 0$ current flows, saturating at I_{DSS} based on doping. If $V_{GS} > 0$ a bit more current flows.

If $V_{GS} < 0$ less current flows.

If $V_{GS} < V_{\theta}$ then $I_D = 0$. V_{θ} is typically a couple volts.

So a voltage (E field) controls a current, like the Ebers-Moll view, but depleting the current.

In the linear region, it behaves like a voltage-controlled resistor:

$$I_{\rm D} = 2k \left[(V_{\rm GS} - V_{\Theta}) V_{\rm DS} - \frac{V_{\rm DS}^2}{2} \right]$$
$$R \approx \frac{1}{2k(V_{\rm GS} - V_{\Theta})}.$$
$$I = n \, \mathrm{A} \, \mathrm{q} \, \mathrm{v}_{\mathrm{d}}$$
$$V_{\rm CS} = 0$$

In saturation region, behaves like a voltage-controlled current source:

In saturation region, behaves like a voltage-controlled current source:

In saturation region, behaves like a voltage-controlled current source:

Now the power supplies are called V_{DD} and V_{SS} instead of V_{CC} and V_{EE}

Can build the same transistor circuits: source follower

Change in V_{GS} changes current flow, so there is a transconductance relation:

$$i_{\rm D} = g_{\rm m} v_{\rm GS}$$

This is from taking delta's of the linear region current relation

source

Can build the same transistor circuits: common-source amplifier

Again we have $i_{\rm D} = g_{\rm m} v_{\rm GS}$ And the output voltage varies as $v_{\text{out}} = v_{\text{D}} = -i_{\text{D}}R_{\text{D}}$ $v_{\rm out} = -g_{\rm m}R_{\rm D}v_{\rm in}$ So. $G = -g_{\rm m}R_{\rm D}$ The transconductance, g_m , is mho and about $1/200\Omega$. So large R_D gives large

Note: no biasing above ground required, just R_G to hold DC at ground.

negative gain.

drain

source

 \mathbf{P}^{-}

10uF

gate ↔

depletion zone

Vin

Can build the same transistor circuits: common-source amplifier

Again we have $i_{\rm D} = g_{\rm m} v_{\rm GS}$ And the output voltage varies as $v_{\text{out}} = v_{\text{D}} = -i_{\text{D}}R_{\text{D}}$ $v_{\rm out} = -g_{\rm m}R_{\rm D}v_{\rm in}$ So. $G = -g_{\rm m}R_{\rm D}$ The transconductance, g_m , is mho and about $1/200\Omega$. So large R_D gives large

Note: no biasing above ground required, just R_G to hold DC at ground.

negative gain.

drain

source

 \mathbf{P}^{-}

10uF

gate ↔

depletion zone

Vin

Can build the same transistor circuits: differential amplifier

Another type of FET uses a metal-oxide-semiconductor based capacitor rather than a junction to control the gate. MOSFET

A thin capacitor is placed over a p-type region between two n-types.

Another type of FET uses a metal-oxide-semiconductor based capacitor rather than a junction to control the gate. MOSFET

A thin capacitor is placed over a p-type region between two n-types. No current flows because of depletion regions. But a positive voltage on the gate (wrt the body) induces negative charge carriers in the p-type region.

Called n-channel since n-type carriers move.

 \sim body

Another type of FET uses a metal-oxide-semiconductor based capacitor rather than a junction to control the gate. MOSFET

A thin capacitor is placed over a p-type region between two n-types. No current flows because of depletion regions.

A positive voltage on the gate (wrt the body) induces negative charge carriers to form a conduction channel — an n-channel.

This is an "enhancement mode" FET, where no current flows until a voltage (relative to the body) allows it.

Another type of FET uses a metal-oxide-semiconductor based capacitor rather than a junction to control the gate. MOSFET

Can instead use an n-type bulk with p-type drain and source implants. Again, no current if gate floating.

Another type of FET uses a metal-oxide-semiconductor based capacitor rather than a junction to control the gate. MOSFET

We can also make depletion mode MOSFETs

If we introduce a channel of charge carriers that allow current to flow with the gate floating, we then need to push them away with a gate voltage to stop the current.

We can also make depletion mode MOSFETs

If we introduce a channel of charge carriers that allow current to flow with the gate floating, we then need to push them away with a gate voltage to stop the current.

Electro-static discharge (ESD) is a risk for MOSFETs due to thin oxide.

Electro-static discharge (ESD) is a risk for MOSFETs due to thin oxide.

Electro-static discharge (ESD) is a risk for MOSFETs due to thin oxide.

Note that the MOSFET has large input impedance since little current flows through capacitor; just induces charge to enable I_D current flow.

Note that the MOSFET has large input impedance since little current flows through capacitor; just induces charge to enable I_D current flow.

MOSFET switches

MOSFETs are useful as switches

DavidStuart@UCSB.edu

MOSFET switches

MOSFETs are useful as switches

MOSFETs are useful for logic

For inputs and outputs that are at V_{DD} or V_{SS} only, we can represent logic high and logic low signals and perform logic operations. MOSFET inverter

MOSFETs are useful for logic

For inputs and outputs that are at V_{DD} or V_{SS} only, we can represent logic high and logic low signals and perform logic operations. MOSFET inverter

But resistors cost more than transistors in both space, €, and power...

Combining n-channel and p-channel MOSFETs together gives a balance of switching. Called, <u>C</u>omplementary <u>Metal-O</u>xide-<u>S</u>emiconductor Field Effect Transistors, or CMOS

For inputs and outputs that are at V_{DD} or V_{SS} only, we can represent logic high and logic low signals and perform logic operations. This is a logic NOT.

For inputs and outputs that are at V_{DD} or V_{SS} only, we can represent logic high and logic low signals and perform logic operations. What is this?

For inputs and outputs that are at V_{DD} or V_{SS} only, we can represent logic high and logic low signals and perform logic operations. What is this?

Phys127AL Lecture 9: Field effect transistors

CMOS

For inputs and outputs that are at V_{DD} or V_{SS} only, we can represent logic high and logic low signals and perform logic operations. What is this? PMOS: NMOS:

On v Off	On with gate low Off with gate high		Off with gate low On with gate high
Trut	h table	.	
А	В	Q	
0	0		-
1	0		
0	1		

1

Phys127AL Lecture 9: Field effect transistors

CMOS

For inputs and outputs that are at V_{DD} or V_{SS} only, we can represent logic high and logic low signals and perform logic operations. What is this? PMOS: On with gate low

	Off with	n gate hig	gh	On with gate high
]	Fruth 1	table:		
ŀ	A	В	Q	
()	0	1	
1		0		
()	1		

1

Phys127AL Lecture 9: Field effect transistors

CMOS

For inputs and outputs that are at V_{DD} or V_{SS} only, we can represent logic high and logic low signals and perform logic operations. What is this? [PMOS: [NMOS:

On with gate low Off with gate high		Off with gate low On with gate high	
Truth	table:		
A	В	Q	
0	0	1	-
1	0		
0	1		

1

Phys127AL Lecture 9: Field effect transistors

CMOS

For inputs and outputs that are at V_{DD} or V_{SS} only, we can represent logic high and logic low signals and perform logic operations.

This is a NOR = NOT OR logic gate

PMOS:	NMOS:
On with gate low	Off with gate low
Off with gate high	On with gate high

Truth table:

А	В	Q
0	0	1
1	0	0
0	1	0
1	1	0

For inputs and outputs that are at V_{DD} or V_{SS} only, we can represent logic high and logic low signals and perform logic operations. What is this? [PMOS:]NMOS:

PMOS:	NMOS:
On with gate low	Off with gate low
Off with gate high	On with gate high

Truth table:

A	В	Q
0	0	
1	0	
0	1	

1

CMOS Logic

CMOS is the workhorse of modern logic circuits

DavidStuart@UCSB.edu