PHYS127AL Lecture 8

David Stuart, UC Santa Barbara, October 19, 2021

More transistor circuits: Ebers-Moll, current mirror, differential amplifier, FETs

Review: Transistor rules of operation

- 1). $V_{BE} = 0.6$ V or the transistor is off I.e., $V_B = V_E + 0.6$ V Once the transistor is on, $\Delta V_B = \Delta V_E$.
- 2). $I_C = \beta I_B$. And by charge conservation $I_E = I_B + I_C$ so $I_E \cong I_C$

3). $V_{CE} > 0.2 V$

With these simple rules we can analyze most transistor circuits. With these simple rules we can analyze most dansistor encuries. V_{CC}
We'll add some nuance later today.

Review: Constant current source

We can use a transistor to pull a *constant* specified current through a load.

To get a constant 1mA flow through RL, even as R_L changes, we can set R_E to 1k and V_E to 1 V.

That sets the value of I_E , which is equal to I_C, regardless of R_L.

Choose R_1 and R_2 to make $V_B = 1.6$ V. Then $V_E = 1.0 V$. $I_E = 1$ mA. $I_C = 1$ mA, regardless of R_L .

This works until $V_C < V_E + 0.2$

Note that there is no input signal here.

Review: Constant current source

We can use this to pull a specified current through a load.

 V_{CC} = + 5 V $\rm V_{EE}$ $R_{\rm E}$ RL R_1

To get a constant 1mA flow through RL, even as RL changes, we can set R_E to 1k and V_E to 1 V. That sets I_E which is equal to I_C , regardless of R_L .

Choose the zener diode to make $V_B = 1.6$ V. The zener reduces sensitivity to V_{CC} variations.

Constant current source

We can use a transistor to *pull* a *constant* specified current through a load. This is actually called a *current sink* since it pulls current from RL.

Constant current source

We can use a PNP transistor to *push* a *constant* specified current into a load.

Now we can switch the location of R_L and R_E . The base's bias voltage sets R_E which sets I_E and hence IC.

For 1 mA we could set $R_E = 1k$ and $V_E = 4 V$. That requires $V_B = 3.4$ V which we get from $R_1 \& R_2$ choice.

 $3.4 = 5 R_2/(R_1 + R_2)$

Ebers-Moll model

The simple transistor rules we have been using aren't the full picture. Two examples of features it misses.

Gain limit with $R_G=0$.

IL is temperature dependent.

Ebers-Moll model

Gain limit comes from intrinsic resistance in the transistor.

Ebers-Moll model

Gain limit comes from intrinsic resistance in the transistor.

We used simplified $(0th$ and 1st order) models:

1). $V_{BE} = 0.6$ V or the transistor is off I.e., $V_B = V_E + 0.6$ V Once the transistor is on, $\Delta V_B = \Delta V_E$.

$$
I_C = I_s \left(e^{V_{BE}/nV_T} - 1 \right)
$$

2). $I_C = \beta I_B$. And by charge conservation $I_E = I_B + I_C$ so $I_E \cong I_C$

3). $V_{CE} > 0.2 V$

We used simplified $(0th$ and 1st order) models:

1). $V_{BE} = 0.6 V$ or the transistor is off I.e., $V_B = V_E + 0.6$ V Once the transistor is on, $\Delta V_B = \Delta V_E$.

$$
I_C = I_s \left(e^{V_{BE}/nV_T} - 1 \right)
$$

2). $I_C = \beta I_B$. And by charge conservation $I_{E} = I_{B} + I_{C}$ so $I_{E} \cong I_{C}$

3). $V_{CE} > 0.2 V$

A 2nd order correction incorporates effects from collector voltage differences

$$
I_{\rm C} = I_{\rm S} \left(e^{V_{\rm BE}/nV_{\rm T}} - 1 \right) \left(1 + \frac{V_{\rm CE}}{V_{\rm AF}} \right) - I_{\rm S} \left(e^{V_{\rm BC}/nV_{\rm T}} - 1 \right) \left(1 + \frac{V_{\rm CE}}{V_{\rm AR}} \right) - \frac{I_{\rm S}}{\beta_{\rm R}} \left(e^{V_{\rm BC}/nV_{\rm T}} - 1 \right)
$$

$$
I_{\rm B} = \frac{I_{\rm S}}{\beta_{\rm F}} \left(e^{V_{\rm BE}/nV_{\rm T}} - 1 \right) - \frac{I_{\rm S}}{\beta_{\rm R}} \left(e^{V_{\rm BC}/nV_{\rm T}} - 1 \right).
$$

(Ebers–Moll equations with Early correction)

We used simplified $(0th$ and 1st order) models:

A 2nd order correction incorporates effects from collector voltage differences

$$
I_{\rm c} = I_{\rm s} \left(e^{V_{\rm BE}/nV_{\rm T}} - 1 \right) \left(1 + \frac{V_{\rm CE}}{V_{\rm AF}} \right) - I_{\rm s} \left(e^{V_{\rm BC}/nV_{\rm T}} - 1 \right) \left(1 + \frac{V_{\rm CE}}{V_{\rm AR}} \right) - \frac{I_{\rm s}}{\beta_{\rm R}} \left(e^{V_{\rm BC}/nV_{\rm T}} - 1 \right)
$$

$$
I_{\rm B} = \frac{I_{\rm s}}{\beta_{\rm F}} \left(e^{V_{\rm BE}/nV_{\rm T}} - 1 \right) - \frac{I_{\rm s}}{\beta_{\rm R}} \left(e^{V_{\rm BC}/nV_{\rm T}} - 1 \right).
$$

(Ebers–Moll equations with Early correction)

We used simplified $(0th$ and 1st order) models: A 2nd order correction incorporates effects from collector voltage differences These are typically not important for 1). $V_{BE} = 0.6$ V or the transistor is off $(e^{V_{BE}/nV_T}-1)$ 0.6 V

istor is on, $\Delta V_B = \Delta V_0 \Delta V_0 \Delta V_0$

conservative and the physicists but
 $E \cong I_C$ and the physicists but
 $E \cong I_C$ and the physicists but are physicists but
 $E \cong I_C$ and the physicists from collector voltage I.e., $V_B = V_E + 0.6 V$ Once the transistor is on, $\Delta V_B = \Delta V_{\rm B}$ $I_{\rm B} = 50 \,\mu\text{A}$ important for EE design working $I_{\rm B} = 40 \,\mu\text{A}$ 2). I_C = β I_B. $I_{\rm B} = 30 \,\mu A$ And by charge conservation $I_{\rm B}$ = 20 μ A $I_E = I_B + I_C$ so $I_E \cong I_C$ $I_{\rm B}$ = 10 μ A 3). $V_{CE} > 0.2 V$ (Ebers–Moll equations with Early correction)

If we try to transmit a signal a long distance, we need to worry about RF pickup because the wires act as an antenna (or capacitively couple).

We could amplify the signal before transmitting to make it large compared to any pickup. But then it becomes a powerful transmitter causing pickup on other wires nearby.

If we try to transmit a signal a long distance, we need to worry about RF pickup because the wires act as an antenna (or capacitively couple).

- We could amplify the signal before transmitting to make it large compared to any pickup. But then it becomes a powerful transmitter causing pickup on other wires nearby.
- Best to transmit signals with small signals that are immune to pickup; use low-voltage differential signals (LVDS) on twisted pairs of wires.

Analyze this by 1st calculating V_A.
\n
$$
V_A = V_{EE} + I_{EE}R_{EE}
$$
\n
$$
I_{EE} = I_{E1} + I_{E2}
$$
\n
$$
= (V_{E1} - V_A)/R_E + (V_{E2} - V_A)/R_E
$$
\n
$$
= (V_{E1} + V_{E2})/R_E - 2V_A/R_E
$$
\n
$$
V_A = V_{EE} + R_{EE}/R_E(V_{E1} + V_{E2})/R_E - 2R_{EE}V_A/R_E
$$
\n
$$
V_A = \frac{R_EV_{EE} + R_{EE}(V_{E1} + V_{E2})}{R_E + 2R_{EE}}
$$
\n
$$
\Delta V_A = (\Delta V_{E1} + \Delta V_{E2}) \frac{R_{EE}}{R_E + 2R_{EE}}
$$
\n
$$
If \Delta V_{E1} = -\Delta V_{E2} then \Delta V_A = 0
$$

This makes the right side just a common-emitter amp with $v_{\text{out}} = (-R_C/R_E) v_2$ If $v2 = -\Delta V_{in}/2 = -v_{in}/2$ then $v_{out} = (R_C/R_E)v_{in}/2$.

Differential gain =
$$
R_C/2R_E
$$

Analyze this by $1st$ calculating V_A . $V_A = V_{EE} + I_{EE}R_{EE}$ $I_{EE} = I_{E1} + I_{E2}$ $= (V_{E1} - V_{A})/R_{E} + (V_{E2} - V_{A})/R_{E}$ $= (V_{E1}+V_{E2})/R_E - 2V_A/R_E$ $V_A = V_{EE} + R_{EE}/R_E (V_{E1}+V_{E2})/R_E - 2R_{EE}V_A/R_E$ VA = ———————————————— ΔVA = (ΔVE1 + ΔVE2) ————— If ΔV_{E1} = - ΔV_{E2} then ΔV_A = 0 $\rm R_EV_{EE}+R_{EE}\,(V_{E1}+V_{E2})$ R_{E} + 2 R_{EE} REE $R_{\rm E}$ + 2 $R_{\rm EE}$

This makes the right side just a common-emitter amp with $v_{\text{out}} = (-R_C/R_E) v_2$ If $v2 = -\Delta V_{in}/2 = -v_{in}/2$ then $v_{out} = (R_C/R_E)v_{in}/2$.

Common mode gain = $-R_C/(R_E+2R_{EE})$ Differential gain = $R_C/2R_E$

Now consider the *common mode* signal, where $v_1 = v_2 = \overline{v} = v_{CM}$

That makes $\Delta I_{E1} = \Delta I_{E2} \& \Delta I_{E} = 2\Delta I_{E1}$

Written with "variation notation" its $i_{E1} = i_{E2}$ and $i_{E} = 2i_{E1}$

So, $\Delta V_A = v_A = i_{\text{EE}}R_{\text{EE}} = 2i_{\text{E1}}R_{\text{EE}}$ Now use Ohm's law to find i_{E1} as $i_{E1} = (\nu_{E} - \nu_{A}) / R_{E}$ $= (v_{CM} - 2i_{E1}R_{EE}) / R_E$ So, $i_{E1} = v_{CM} / (R_E + 2R_E)$

 $v_{\text{out}} = -i_{E1} R_C = -v_{CM} R_C / (R_E + 2R_E)$

Get positive gain by selecting output from $v_2 = -v/2$

Don't need output from other side, but we do need the other side to get the common mode suppression.

Comment on "CM" jargon.

To maximize the CMRR $=$ G_{Diff}/G_{CM} make R_{EE} large.

A current source has infinite impedance.

Common mode gain = $-R_C/(R_E+2R_{EE})$ Differential gain = $R_C/2R_E$

Get positive gain by selecting output from $v_2 = -v/2$

Don't need output from other side, but we do need the other side to get the common mode suppression.

Comment on "CM" jargon.

To maximize the CMRR $=$ G_{Diff}/G_{CM} make R_{EE} large.

A current source has infinite impedance.

Common mode gain = $-R_C/(R_E+2R_{EE})$ Differential gain = $R_C/2R_E$

Common mode gain = $-R_C/(R_E+2R_{EE})$ separately later. Differential gain = $R_C/2R_E$

To maximize the CMRR $=$ G_{Diff}/G_{CM} make R_{EE} large.

A current source has infinite impedance.

A current mirror makes R_C large for differential signals and small for common mode.

So this circuit gives very maximal G_{Diff} and a large common mode rejection ratio. But we no longer control the gain; we'll see how to do that

Current limiter

Separate from having a constant current, we often want to limit K_{max} .

If Q_2 's V_{BE} <0.6 V it turns off, so no current flows through R_b and Q_1 has a high V_b and Q_1 is on.

If enough current flows to cause the voltage drop across R_s to go above 0.6 V, Q_2 turns on and current flows through R_b . That reduces the base voltage of Q_1 , lowering the current through Q_1 and hence the current through R_s to turn off Q_2 . This rapid on/off leads to an equilibrium at the max current of 0.6/Rs.

I.e., attempts to increase the load current beyond $I_L = 0.6/R_s$ (either by higher V_{CC} or lower R_L) will lead to a max current of $0.6/R_s$.

E.g., $R_s = 0.6\Omega$ limits load current to 1 A.

If we wanted to drive a high current load, like a speaker, we need a low $R_{\rm C}$ ($X_{\rm out}$), and a low $R_{\rm E}$. So transistor dissipates a lot of power.

If we wanted to drive a high current load, like a speaker, we need a low $R_{\rm C}$ ($X_{\rm out}$), and a low $R_{\rm E}$. So transistor dissipates a lot of power.

Speakers are usually 8Ω , so we need a very small R_C to match.

And a very large C_{out} for audio frequency: 20 Hz = $1/RC = 1/8*C$ $C = 1/160 = 6mF!$

If we wanted to drive a high current load, like a speaker, we need a low $R_{\rm C}$ ($X_{\rm out}$), and a low $R_{\rm E}$. So transistor dissipates a lot of power.

Speakers are usually 8Ω , so we need a very small R_C to match.

And a very large C_{out} for audio frequency: 20 Hz = $1/RC = 1/8*C$ $C = 1/160 = 6mF!$

Better to set the V_{out} quiescent point at ground, with a dual power supply, and DC couple the output.

If we wanted to drive a high current load, like a speaker, we need a low $R_{\rm C}$ ($X_{\rm out}$), and a low $R_{\rm E}$. So transistor dissipates a lot of power.

Even better to use an emitter follower as the output stage.

Amplification done in a previous stage. This just drives the speaker.

 R_E still needs to be small, with high power to V_{EE} .

If we wanted to drive a high current load, like a speaker, we need a low $R_{\rm C}$ ($X_{\rm out}$), and a low $R_{\rm E}$. So transistor dissipates a lot of power.

Fix that by making the speaker be R_E Connect it only to ground But need two transistors to drive it; They push and pull current.

If we wanted to drive a high current load, like a speaker, we need a low $R_{\rm C}$ ($X_{\rm out}$), and a low $R_{\rm E}$. So transistor dissipates a lot of power.

If we wanted to drive a high current load, like a speaker, we need a low $R_{\rm C}$ ($X_{\rm out}$), and a low $R_{\rm E}$. So transistor dissipates a lot of power.

Fix that by making the speaker be R_E Connect it only to ground But need two transistors to drive it; They push and pull current. But there is a *cross-over distortion* between $+0.6$ and -0.6 V.

Fix that by biasing each transistor by just enough $(0.6 V)$ to turn on when Vin goes above or below zero.

A diode does that, but temperature sensitive.

If we wanted to drive a high current load, like a speaker, we need a low $R_{\rm C}$ ($X_{\rm out}$), and a low $R_{\rm E}$. So transistor dissipates a lot of power.

Fix that by making the speaker be R_E Connect it only to ground But need two transistors to drive it; They push and pull current. But there is a *cross-over distortion* between $+0.6$ and -0.6 V.

Fix that by biasing each transistor by just enough $(0.6 V)$ to turn on when Vin goes above or below zero.

A diode does that, but temperature sensitive. So use identical copies of the push-pull transistors. (Ebers-Moll)

The NPN and PNP transistors we've discussed so far are called bi-polar junction transistors (BJT). FETs operate under a different mechanism.

This is a junction FET (jFET) where a p-type region is implanted within an n-type bulk. The depletion region can be controlled by the gate. Lower V_g increases the depletion.

So changing the gate voltage controls n and I. Like pinching off a hose.

Electro-static discharge (ESD) is a risk for MOSFETs due to thin oxide.

