PHYS127AL Lecture 5

David Stuart, UC Santa Barbara More diodes; Transistors

Review

Diodes:

- Current proportional to charge carrier density, n
- Doping n-type or p-type impurities in a silicon crystal changes n
- A junction between n-type and p-type causes a depletion region
- Reverse bias increases depletion region without current flow
- Forward bias reduces depletion region; large current once overcome.

Outline

More diodes:

Power supply

LEDs

Battery backup circuit Photodiodes

Transistors Basic idea of operation General rules for circuit analysis First example circuits

Diode circuits

If diodes are in-line, they just drop 0.7 Volts — if current is flowing—otherwise they act like an open circuit. "Rectifier circuit."

Can use this to convert an AC signal to a DC signal, e.g., in a power supply, with a capacitor to provide current between swings.

Can use this to convert an AC signal to a DC signal, e.g., in a power supply, with a capacitor to provide current between swings.

Can use this to convert an AC signal to a DC signal, e.g., in a power supply, with a capacitor to provide current between swings.

Can use the negative swing with four diodes in a "full-wave rectifier" circuit.

Full-wave rectifier circuit uses the positive and negative swings

Voltage across R_{load} is positive for both half-cycles, but we have two diode drops, 1.4 V, given up in the rectifier.

Full-wave rectifier circuit uses the positive and negative swings

Again, a capacitor can smooth the ripple between peaks.

Note use of electrolytic cap here.

Digression on switches

Many kinds of switches available.

DavidStuart@UCSB.edu

Phys127AL Lecture 5: More diodes; transistors

Toggle switch

Digression on fuses

Many kinds of fuses; usually a thin wire that melts at a specific current.

Digression on fuses — resettable fuses

"Resettable fuses" are usually just thermistors that have their resistance increase dramatically with temperature. Turning off the power and waiting a minute will reset them by letting them cool down. If the source of the high current problem is gone, re-powering after cool down will return the circuit to functionality.

Digression on fuses — circuit breaker

For a house or building, the AC power is separated into about a dozen circuits, with circuit breakers that limit current to 15 or 20 A.

Digression on fuses — circuit breaker

For a house or building, the AC power is separated into about a dozen circuits, with circuit breakers that limit current to 15 or 20 A.

Digression on fuses — ground fault interrupter

For kitchens and bathrooms (where standing water is likely), power outlets must use a GFCI to avoid current shorting to ground through external paths.

Full DC power supply circuit

Full DC power supply circuit

Full DC power supply circuit

Final diode power supply circuits

Select a zener diode with a breakdown to match the desired clamping voltage.

More realistic diode behavior

We initially approximated the diode IV as a short circuit above 0.7 V

More realistic diode behavior

We initially approximated the diode IV as a short circuit above 0.7 V; but it actually starts earlier and is less steep. 200 1N914

Light Emitting Diodes

Phys127AL Lecture 5: More diodes; transistors

LED lights when DC power supply is active.

LED1 lights when DC power supply is active. LED2 lights when battery is active.

Photo Diodes

Photo Transistors

For detecting light, we often use phototransistors rather than photodiodes. They amplify the $I(N_{\gamma})$ response.

- We get a hint of how by seeing that diode current increases with voltage across it.
- Current flow frees more carriers. Photocurrent controls larger current.

Transistors

A transistor operates by amplifying <u>current</u>. It is *active*, meaning more power out than in. Previous components were *passive*.

Made by sandwiching a thin, lightly-doped p-type layer between n-type regions.

Transistors

If we have a voltage across the base-emitter junction > 0.6 V it becomes forward biased.

Negative charge carries move from the emitter to the base, but they can also move across the field region to the collector.

Ε

I_B controls I_C and amplifies it by a factor $\beta \approx 100$.

emitter

Transistor rules of operation

- 1). $V_{BE} = 0.6 \text{ V}$ or the transistor is off I.e., $V_B = V_E + 0.6 \text{ V}$ Once the transistor is on, $\Delta V_B = \Delta V_E$.
- 2). $I_C = \beta I_B$. And by charge conservation $I_E = I_B + I_C$ so $I_E \cong I_C$

3). $V_{CE} > 0.2 V$

With these simple rules we can analyze most transistor circuits. We'll add some nuance later.

Transistor rules of operation

- 1). $V_{BE} = 0.6 \text{ V}$ or the transistor is off I.e., $V_B = V_E + 0.6 \text{ V}$ Once the transistor is on, $\Delta V_B = \Delta V_E$.
- 2). $I_C = \beta I_B$. And by charge conservation $I_E = I_B + I_C$ so $I_E \cong I_C$

3). $V_{CE} > 0.2 V$

- With these simple rules we can analyze most transistor circuits. We'll add some nuance later.
- The 2N3904 is an NPN transistor. You also have others we will discuss later.

Transistor rules of operation

- 1). $V_{BE} = 0.6 \text{ V}$ or the transistor is off I.e., $V_B = V_E + 0.6 \text{ V}$ Once the transistor is on, $\Delta V_B = \Delta V_E$.
- 2). $I_C = \beta I_B$. And by charge conservation $I_E = I_B + I_C$ so $I_E \cong I_C$

3). $V_{CE} > 0.2 V$

- With these simple rules we can analyze most transistor circuits. We'll add some nuance later.
- The 2N3904 is an NPN transistor. You also have others we will discuss later.

Some terminology:

The power supply connected to the collector is called V_{CC} . The power supply connected to the emitter is called V_{EE} . 2N3904

EBC

B

VleW

Simplest transistor circuit

Can switch a large current with a small current.

Simplest transistor circuit

Can switch a large current with a few photons.

This transistor circuit has the output "follow" the input, with a 0.6 V drop.

This transistor circuit has the output "follow" the input, with a 0.6 V drop.

This transistor circuit has the output "follow" the input, with a 0.6 V drop.

The benefit here is increased input impedance. Recall that impedance is $R = \Delta V / \Delta I$

Without the transistor we need to flow $\Delta I = \Delta V / R_E$ to change V_{in} by ΔV

With the transistor, we can calculate R_{in} from

 $R_{in} = \Delta V_{in} / \Delta I_{in} = \Delta V_B / \Delta I_B$

The base current is $1/\beta$ of the emitter current, since $I_E \cong I_C = \beta I_B$. So,

 $R_{in} = \Delta V_{in} / \Delta I_{in} = \Delta V_B / (\Delta I_E / \beta) = \beta \Delta V_B / \Delta I_E$

We also had $\Delta V_B = \Delta V_E$ from the transistor rules, so

 $R_{in} = \beta \Delta V_B / \Delta I_E = \beta \Delta V_E / \Delta I_E = \beta R_E$

The input impedance is β times larger than R_{E.} The transistor amplifies the impedance by $\beta \approx 100$. \mathbf{R}_{E}

 V_E o

The benefit here is increased input impedance. Recall that impedance is $R = \Delta V / \Delta I$

The transistor amplifies the impedance by $\beta \approx 100$.

This is the way to make each stage have large input impedance; put a transistor at its input.

The emitter will follow the variations in the input. The DC shift of 0.6 V is not a problem because the variation of V_{in} is the signal.

The additional power needed is supplied by V_{CC}.

The benefit here is increased input impedance. Recall that impedance is $R = \Delta V / \Delta I$

The transistor amplifies the impedance by $\beta \approx 100$.

This is the way to make each stage have large input impedance; put a transistor at its input.

The emitter will follow the variations in the input. The DC shift of 0.6 V is not a problem because the <u>variation</u> of V_{in} is the signal.

The additional power needed is supplied by V_{CC}.

Can get a factor of β^2 with two followers. (Darlington configuration.) However, that costs two diode drops.

We can remove the clipping at 0 V by setting V_{EE} to a negative supply.

