PHYS127AL Lecture 16

David Stuart, UC Santa Barbara Active filters

Review: Frequency response function for a high-pass filter

$$\begin{split} \tilde{V}_{\text{out}} &= \tilde{I}\tilde{X}_R = \tilde{I}R = \frac{\tilde{V}_{\text{in}}}{R + \tilde{X}_C} R = \tilde{V}_{\text{in}} \frac{R}{R + \tilde{X}_C} \qquad v_{\text{in}} \circ \overbrace{I}^C \\ \tilde{V}_{\text{out}} &= \tilde{V}_{\text{in}} \left[\frac{R}{R - j/\omega C} \right] = \tilde{V}_{\text{in}} \left[\frac{R}{R - j/\omega C} \right] \left[\frac{R + j/\omega C}{R + j/\omega C} \right] \\ \tilde{V}_{\text{out}} &= \tilde{V}_{\text{in}} \frac{R^2 + jR/\omega C}{R^2 + 1/\omega^2 C^2} = \tilde{V}_{\text{in}} \frac{1 + j/\omega R C}{1 + 1/\omega^2 R^2 C^2} \\ \tilde{V}_{\text{out}} &= \left| \tilde{V}_{\text{in}} \right| \left| \frac{1 + j\omega R C}{1 + \omega^2 R^2 C^2} \right| \\ \frac{|\tilde{V}_{\text{out}}|}{|\tilde{V}_{\text{in}}|} &= \left| \frac{1 + j/\omega R C}{1 + 1/\omega^2 R^2 C^2} \right| = \sqrt{\left[\frac{1 + j/\omega R C}{1 + 1/\omega^2 R^2 C^2} \right] \left[\frac{1 - j/\omega R C}{1 + 1/\omega^2 R^2 C^2} \right]} \\ \frac{|\tilde{V}_{\text{out}}|}{|\tilde{V}_{\text{in}}|} &= \sqrt{\frac{1 + 1/\omega^2 R^2 C^2}{(1 + 1/\omega^2 R^2 C^2)^2}} = \frac{\sqrt{1 + 1/\omega^2 R^2 C^2}}{1 + 1/\omega^2 R^2 C^2} = \frac{1}{\sqrt{1 + 1/\omega^2 R^2 C^2}} \\ \end{array}$$

Review: Frequency response function for a high-pass filter

$$\frac{|\tilde{V}_{out}|}{|\tilde{V}_{in}|} = \frac{1}{\sqrt{1+1/\omega^2 R^2 C^2}} = \frac{\omega R C}{\sqrt{1+\omega^2 R^2 C^2}} \quad v_{in} \circ \int_{\mathbb{T}}^{C} v_{out}$$

$$V_{out} \rightarrow 0 \text{ as } \omega \rightarrow 0 \text{ and } V_{out} \rightarrow V_{in} \text{ as } \omega \rightarrow \infty.$$

$$\frac{|\tilde{V}_{out}|}{|\tilde{V}_{in}|} = \frac{1}{\sqrt{2}} = -3 \text{ dB}$$

Review: Frequency response function for a high-pass filter

This improved the low-end frequency response, but we lose more at the high end.

This improved the low-end frequency response, but we lose more at the high end.

DavidStuart@UCSB.edu

This improved the low-end frequency response, but we lose more at the high end. We could add more stages to further suppress the low end.

DavidStuart@UCSB.edu

Phys127AL Lecture 16: Active filters

- This improved the low-end frequency response, but we lose more at the high end. We could add more stages to further suppress the low end.
- Two problems: lose the high end and need $(x10)^4$ impedance increases.

- This improved the low-end frequency response, but we lose more at the high end. We could add more stages to further suppress the low end.
- Two problems: lose the high end and need $(x10)^4$ impedance increases.
- Fix the impedance with op-amp buffers.

- This improved the low-end frequency response, but we lose more at the high end. We could add more stages to further suppress the low end.
- Two problems: lose the high end and need $(x10)^4$ impedance increases.
- Fix the impedance with op-amp buffers.
- We could regain the high end by putting gain into the op-amp, and ideally make the gain be frequency dependent.

Another problem is that each stage introduces a phase shift that could build up. We could avoid the phase shift with an LC filter instead of RC.

Another problem is that each stage introduces a phase shift that could build up. We could avoid the phase shift with an LC filter instead of RC.

Shrinking an inductor

The problem with inductors is that they are physically huge.

Resistors and capacitors can be made small ($\sim\mu m$) with photolithography.

It would be nice to emulate an inductance with tiny components (like R, C, and op-amps)

 $X_L = j\omega L$ while $X_C = -j/\omega C$.

To convert a capacitance to an inductance we need to *invert* the frequency dependence and *negate* the impedance. (Negative impedance means that a higher voltage reduces the current.)

We can do that with a "negative impedance converter".

The problem with inductors is that they are physically huge.

A negative impedance converter helps provide the inductor emulation.

The problem with inductors is that they are physically huge.

A negative impedance converter helps provide the inductor emulation.

$$V_{A} = V_{in} (1 + X_{2}/X_{1})$$

$$I_{3} = (V_{A} - V_{in})/X_{3} = (V_{in} + V_{in} X_{2}/X_{1} - V_{in})/X_{3}$$

$$= V_{in} X_{2}/(X_{1}X_{3})$$

I₃ flows *from* A *into* the input, so $I_{in} = -I_3$.

The problem with inductors is that they are physically huge.

A negative impedance converter helps provide the inductor emulation.

$$V_{A} = V_{in} (1 + X_{2}/X_{1})$$

$$I_{3} = (V_{A} - V_{in})/X_{3} = (V_{in} + V_{in} X_{2}/X_{1} - V_{in})/X_{3}$$

$$= V_{in} X_{2}/(X_{1}X_{3})$$

I₃ flows *from* A *into* the input, so $I_{in} = -I_3$.

$$X_{in} = \Delta V_{in} / \Delta I_{in} = \Delta V_{in} / (-\Delta V_{in} X_2 / (X_1 X_3))$$

$$X_{in} = -X_1 X_3 / X_2$$

The problem with inductors is that they are physically huge.

A negative impedance converter helps provide the inductor emulation.

 $V_{A} = V_{in} (1 + X_{2}/X_{1})$ $I_{3} = (V_{A} - V_{in})/X_{3} = (V_{in} + V_{in} X_{2}/X_{1} - V_{in})/X_{3}$ $= V_{in} X_{2}/(X_{1}X_{3})$

I₃ flows *from* A *into* the input, so $I_{in} = -I_3$.

$$X_{in} = \Delta V_{in} / \Delta I_{in} = \Delta V_{in} / (-\Delta V_{in} X_2 / (X_1 X_3))$$

 $X_{in} = -X_1 X_3 / X_2$ $X_{in} = -X_3$

The problem with inductors is that they are physically huge.

A negative impedance converter helps provide the inductor emulation.

$$V_{\rm A} = V_{\rm in} \left(1 + X_2 / X_1 \right)$$

 $I_3 = (V_A - V_{in})/X_3 = (V_{in} + V_{in} X_2/X_1 - V_{in})/X_3$ $= V_{in} X_2/(X_1X_3)$

I₃ flows *from* A *into* the input, so $I_{in} = -I_3$.

$$X_{in} = \Delta V_{in} / \Delta I_{in} = \Delta V_{in} / (-\Delta V_{in} X_2 / (X_1 X_3))$$

$$X_{in} = -X_1 X_3 / X_2$$

$$X_{in} = -R R / (-j/\omega C) = R^2 \omega C/j$$

$$X_{in} = -j\omega CR^2$$

Combine this with previous, plug it in using the fact that *ground is just a reference*.

 $X = j\omega CR^2$ which is like an $L = CR^2$.

Sallen-Key filter configuration

Can combine R's, C's, and op-amps in general configuration.

Analyzing the V_{out} vs V_{in} behavior can be done with the golden rules. But let's do that more generally.

Can combine R's, C's, and op-amps in general configuration.

Analyzing the V_{out} vs V_{in} behavior can be done with the golden rules and Ohm's law.

 $V_{+} = ?$ $V_{A} = ?$ $V_{A} - V_{+} = ?$

 $V_{+} = ?$

Can combine R's, C's, and op-amps in general configuration.

Analyzing the V_{out} vs V_{in} behavior can be done with the golden rules and Ohm's law.

$$V_{+} = V_{out}$$

$$V_{A} = V_{in} - I_{1} X_{1}$$

$$V_{A} - V_{+} = I_{2} X_{2}$$

$$V_{+} = I_{4} X_{4} = I_{2} X_{4}$$

$$V_{A} - V_{out} = I_{3} X_{3}$$

$$V_{+} = V_{A} X_{4} / (X_{2}+X_{4})$$

$$V_{out} = V_{A} X_{4} / (X_{2}+X_{4})$$

DavidStuart@UCSB.edu

 $+ X_3 X_4$

Can combine R's, C's, and op-amps in general configuration.

Analyzing the V_{out} vs V_{in} behavior can be done with the golden rules and Ohm's law.

 $V_{+} = V_{out}$ $V_{A} = V_{in} - I_{1} X_{1}$ $V_{A} - V_{+} = I_{2} X_{2}$ $V_{+} = I_{4} X_{4} = I_{2} X_{4}$ $V_{A} - V_{out} = I_{3} X_{3}$ $V_{+} = V_{A} X_{4} / (X_{2} + X_{4})$

$$\frac{V_{out}}{V_{in}} = \frac{X_3 X_4}{X_1 X_2 + X_3 (X_1 + X_2) + X_3 X_4}$$

You can choose any mix of R and C (or even L with NIC) to get whatever relationship you want.

We could also add amplification.

DavidStuart@UCSB.edu

Can combine R's, C's, and op-amps in general configuration.

- Can vary X1 X4 and gain to get a variety of different response types.
- You will not be likely to build your own active filter.
- Can buy them to match specs.

Can combine R's, C's, and op-amps in general configuration.

- Can vary X1 X4 and gain to get a variety of different response types.
- You will not be likely to build your own active filter.
- Can buy them to match specs.
- But they can cost \$5 \$10.

It is getting more common to simply sample, digitally process, and then re-drive.

It is getting more common to simply sample, digitally process, and then re-drive.

Instead of a full operating system, you can just use a micro controller, like the OpenScope and AD2.

PIC = peripheral interface controller

It is getting more common to simply sample, digitally process, and then re-drive.

For processing a lot of parallel data, can use a Field Programmable Gate Array (FPGA) which can process hundreds of inputs at O(GHz) in parallel.

DavidStuart@UCSB.edu

It is getting more common to simply sample, digitally process, and then re-drive.

For processing a lot of parallel data, can use a Field Programmable Gate Array (FPGA) which can process hundreds of inputs at O(GHz) in parallel.

Many inputs, so have a 2D grid of connections with sub-mm spacing.

It is getting more common to simply sample, digitally process, and then re-drive.

For processing a lot of parallel data, can use a Field Programmable Gate Array (FPGA) which can process hundreds of inputs at O(GHz) in parallel.

Many inputs, so have a 2D grid of connections with sub-mm spacing.

- It is getting more common to simply sample, digitally process, and then re-drive.
- For processing a lot of parallel data, can use a Field Programmable Gate Array (FPGA) which can process hundreds of inputs at O(GHz) in parallel.
- Many inputs, so have a 2D grid of connections with sub-mm spacing.
- But "better is the enemy of good."
- You can often just think about it and "add a cap" or an inductor to make it work.

As a hint toward next time: What does this circuit do?

