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Review: Oscillator
We made an oscillator with an op-amp

The I+ = I- = 0 golden rule means 
we can calculate V+ and V- in terms 
of V1. 

V+ = V1/2 

V2 = V- = V1 - I R 
where I = C dV2/dt 
What is V1?
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Review: 555 timer
Oscillators and other timing applications are so common, there is a timer chip
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Review: 555 timer

VCC

C

R1

R2

Oscillators and other timing applications are so common, there is a timer chip

This is the “astable” configuration. (Not stable in either configuration.)
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Review: 555 timer
Oscillators and other timing applications are so common, there is a timer chip

This is the “mono-stable” configuration.       (Stable only when off.)
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Digital potentiometer
We can adjust the frequency by changing the resistance with a potentiometer.  
It is more common now to use a “digital potentiometer” (cheaper than trimpot).
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Voltage controlled oscillator
It is sometimes useful to control an oscillator with a voltage, or to encode a 
voltage as a frequency.

PD Amp Filter
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Voltage controlled oscillator
It is sometimes useful to control an oscillator with a voltage, or to encode a 
voltage as a frequency.
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Voltage controlled oscillator
It is sometimes useful to control an oscillator with a voltage, or to encode a 
voltage as a frequency.

Schmitt trigger

Out2 is either high or low as output of comparator.

nMOS

100k
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Out1 linearly ramps down until VEE/2, then Out2 flips to VCC. 
Ramp rate proportional to Vin.
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Voltage controlled oscillator
It is sometimes useful to control an oscillator with a voltage, or to encode a 
voltage as a frequency.

Integrator with 
Vin control

Negative 
feedback

Out2 is either high or low as output of comparator.

nMOS
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Voltage controlled oscillator
It is sometimes useful to control an oscillator with a voltage, or to encode a 
voltage as a frequency.

Integrator with 
Vin control

Negative 
feedback

Out2 is either high or low as output of comparator.

nMOS

100k

50k
50k

50k
100k

100k

If Out1>0 & Out2=VEE, 
then nMOS=off. 
C charges as an integrator

Vout1
Vin/2

I →

Out1 linearly ramps down until VEE/2, then Out2 flips to VCC. 
Ramp rate proportional to Vin.

I = (Vin-Vin/2) / 100k = Vin / 200k 
I = C dV/dt = Vin / 200k 
C d(Vin/2-Vout1)/dt = Vin / 200k 
C dVout1/dt = -Vin / 200k 
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Voltage controlled oscillator
It is sometimes useful to control an oscillator with a voltage, or to encode a 
voltage as a frequency.

Integrator with 
Vin control

Negative 
feedback

Out2 is either high or low as output of comparator.

nMOS

100k

50k
50k

50k
100k

100k

Vout1
Vin/2

I →

I = (Vin-Vin/2)/100k = Vin/200k 
ID = (Vin / 2) / 50k = Vin / 100k 
IC = I-ID = Vin (1/200k - 1/100k) 
IC = I-ID = -Vin/200k 
C d(Vin/2-Vout1)/dt = -Vin / 200k 
C dVout1/dt = Vin / 200k 

If Out1<0 & Out2=VCC, 
then nMOS=on. 
C charges as an integrator

50k

IC →

ID  →

Out1 linearly ramps up until VCC/2, then Out2 flips to VEE. 
Ramp rate proportional to Vin.
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Voltage controlled oscillator
It is sometimes useful to control an oscillator with a voltage, or to encode a 
voltage as a frequency.
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Triangle wave output

Square wave output
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Sine wave oscillator
We could get a sine wave oscillator in a few ways: 
0). Use a computer to rapidly change the resistance in a digital potentiometer 
used in a voltage divider 
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Sine wave oscillator
We could get a sine wave oscillator in a few ways: 
0). Use a computer to rapidly change the resistance in a digital potentiometer 
used in a voltage divider 
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Sine wave oscillator
We could get a sine wave oscillator in a few ways: 
1). Filter square wave with low-pass filter: f(x) = sin(x)+sin(3x)/3+sin(5x)/5 + … 
2). Chop the triangle wave 
3). Tune resonance 
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Sine wave oscillator
We could get a sine wave oscillator in a few ways: 
1). Filter square wave with low-pass filter: f(x) = sin(x)+sin(3x)/3+sin(5x)/5 + … 
2). Chop the triangle wave 
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Sine wave oscillator
We could get a sine wave oscillator in a few ways: 
1). Filter square wave with low-pass filter: f(x) = sin(x)+sin(3x)/3+sin(5x)/5 + … 
2). Chop the triangle wave 
3). Tune resonance 
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Sine wave oscillator
We could get a sine wave oscillator in a few ways: 
1). Filter square wave with low-pass filter: f(x) = sin(x)+sin(3x)/3+sin(5x)/5 + … 
2). Chop the triangle wave 
3). Tune resonance 
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Sine wave oscillator
We could get a sine wave oscillator in a few ways: 
1). Filter square wave with low-pass filter: f(x) = sin(x)+sin(3x)/3+sin(5x)/5 + … 
2). Chop the triangle wave 
3). Tune resonance 

Re

Im

1/ωC

R

Initially have an inverting amp, then RC filters 
that phase shift. At just the right frequency, 

ω= , they each have 60° phase shift. 
So net effect is 180° so another inverter. 
Positive feedback at the resonant ω. 

Lose a factor of   = 1/2  at each step. 
So R2/R1 = 8 to get stable oscillation.
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Sine wave from Wien bridge oscillator
We could get a sine wave oscillator in a few ways: 
1). Filter square wave with low-pass filter: f(x) = sin(x)+sin(3x)/3+sin(5x)/5 + … 
2). Chop the triangle wave 
3). Tune resonance 

The CR-RC are a hi&low pass filter.  
At ω=1/RC, phase shift at V+ is 0°  
so positive feedback, and V+=Vout/3. 
If we could  finely adjust Rg = Rf/2 to get the non-
inverting amp gain of G = 1+Rf/Rg = 3, net gain=1. 

RfRg

Vout
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Sine wave from Wien bridge oscillator
We could get a sine wave oscillator in a few ways: 
1). Filter square wave with low-pass filter: f(x) = sin(x)+sin(3x)/3+sin(5x)/5 + … 
2). Chop the triangle wave 
3). Tune resonance 

The CR-RC are a hi&low pass filter.  
At ω=1/RC, phase shift at V+ is 0°  
so positive feedback, and V+=Vout/3. 
If we could  finely adjust Rg = Rf/2 to get the non-
inverting amp gain of G = 1+Rf/Rg = 3, net gain=1. 

Do this with thermal negative feedback using a lamp. 
A lamp’s resistance is low at low temperature and 
increases as its temperature increases.

Rf
Rg

Vout

If Vout gets too big, more current flows through Rg, which increases Rg, which decreases 
the gain and hence decreases Vout. Negative feedback. 

If Vout gets too small, less current flows through Rg, which decreases Rg, which increases 
the gain and hence increases Vout. Negative feedback. 

Equilibrium at just the right gain to oscillate at ω=1/RC.
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Piezo-buzzer
The buzzer you will use in lab this week is not a speaker. 
It is just a mechanical resonator, with thin ceramic and metal disks.   
The ceramic deforms due to the electric field of an applied voltage. 
Small ceramic deformations cause larger vibrations in the metal disk.
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Quartz crystal oscillator
The resonant frequency depends on the size and tension. 
To get very high resonant frequency, need a small & stiff material ⇒ quartz.
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Quartz crystal oscillator
The resonant frequency depends on the size and tension. 
To get very high resonant frequency, need a small & stiff material ⇒ quartz.
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Quartz crystal oscillator
The resonant frequency depends on the size and tension. 
To get very high resonant frequency, need a small & stiff material ⇒ quartz.

Can get high frequencies, with higher harmonics of resonance. 
High Q oscillators so can get low drift. Temperature compensation helps.
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Oscillator performance
A measure of oscillator performance is the frequency drift and phase jitter. 
"Eye diagram":
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Oscillator performance
A measure of oscillator performance is the frequency drift and phase jitter. 
"Eye diagram":
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Oscillator performance
A measure of oscillator performance is the frequency drift and phase jitter. 
"Eye diagram":
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Open collector comparator
Recall that comparator ICs differ from a simple op-amp wired as a 
comparator.

VThr
+

-

LM311
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Differential amplifier
The op-amp is a huge gain differential amplifier. We can get controlled 
differential amplification with negative feedback using…
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Differential amplifier

VB = V+ R2/(R1+R2) = VA 
I = (V- - VA)/R1 
Vout = VA - I R2 

A

B

Vout = V+ R2/(R1+R2) - (V- - VA)R2/R1   
       = R2 [V+ /(R1+R2) - V- /R1 + V+ R2/R1(R1+R2)] 

       = R2 [V+(1+R2/R1)/(R1+R2) - V- /R1] 

       = R2 [V+(R1/R1+R2/R1)/(R1+R2) - V- /R1] 

       = R2 [V+/R1 - V- /R1] 

       = (V+ - V-)R2/R1 

I

I

The op-amp is a huge gain differential amplifier. We can get controlled 
differential amplification with negative feedback using this circuit.
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An optimal, general purpose differential amplifier
Ideally, we would“buffer” the inputs and precisely match the resistors. 
Worth making this a standard IC.
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An optimal, general purpose differential amplifier
Ideally, we would“buffer” the inputs and precisely match the resistors. 
Worth making this a standard IC. Called an “instrumentation amp”.

Vout-

Vout+
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An optimal, general purpose differential amplifier
Ideally, we would“buffer” the inputs and precisely match the resistors. 
Worth making this a standard IC. Called an “instrumentation amp”.

Vout = (Vout+ - Vout-)R/R = Vout+ - Vout- 

Vout-

Vout+
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An optimal, general purpose differential amplifier
Ideally, we would“buffer” the inputs and precisely match the resistors. 
Worth making this a standard IC. Called an “instrumentation amp”.

Vout = (Vout+ - Vout-)R/R = Vout+ - Vout- 
I = (V+-V-)/R1 
Vout+ = V+ + I R2   and  Vout- = V- - I R2 
     

Vout-

Vout+
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Mobility
The speed of charge carriers is determined by "mobility"
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Mobility
The speed of charge carriers is determined by "mobility", µ
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I = nAqvd

vd = μE

mailto:DavidStuart@UCSB.edu
mailto:DavidStuart@UCSB.edu

